How to Start with Self-Driving Cars Using ROS

how to start with self driving cars with ros

Written by Ricardo Tellez

29/09/2017

 

Self-driving cars are inevitable.

In recent years, self-driving car research is becoming the main direction of automotive companies. BMW, Bosch, Google, Baidu, Toyota, GE, Tesla, Ford, Uber, and Volvo are investing in autonomous driving research. Also, many new companies have appeared in the autonomous cars industry: Drive.ai, Cruise, nuTonomy, Waymo to name a few (read this post for a 260 list of companies involved in the self-driving industry).

The rapid development of this field has promoted a large demand for autonomous-cars engineers. Among the skills required, knowing how to program with ROS is becoming an important one. You just have to visit the robotics-worldwide list to see the large amount of job offers for working/researching in autonomous cars, which demand knowledge of ROS.

Why ROS is interesting for Autonomous Cars

Robot Operating System (ROS) is a mature and flexible framework for robotics programming. ROS provides the required tools to easily access sensors data, process that data, and generate an appropriate response for the motors and other actuators of the robot. The whole ROS system has been designed to be fully distributed in terms of computation, so different computers can take part in the control processes, and act together as a single entity (the robot).

Due to those characteristics, ROS is a perfect tool for self-driving cars. After all, an autonomous vehicle can be considered just as another type of robot, so the same types of programs can be used to control them. ROS is interesting for autonomous cars because:

  1. There is a lot of code for autonomous cars already created. Autonomous cars require the creation of algorithms that are able to build a map, localize the robot using lidars or GPS, plan paths along maps, avoid obstacles, process pointclouds or cameras data to extract information, etc… All kind of algorithms required for the navigation of wheeled robots is almost directly applicable to autonomous cars. Hence, since those algorithms have already been created in ROS, self-driving cars can just make use of them off-the-shelf.
  2. Visualization tools already available. ROS has created a suite of graphical tools that allow the easy recording and visualization of data captured by the sensors, and represent the status of the vehicle in a comprehensive manner. Also, it provides a simple way to create additional visualizations required for particular needs. This is tremendously useful when developing the control software and trying to debug the code.
  3. It is relatively simple to start an autonomous car project with ROS onboard. You can start right now with a simple wheeled robot equipped with a pair of wheels, a camera, a laser scanner, and the ROS navigation stack, and you are set up in a few hours. That could serve as a basis to understand how the whole thing works. Then you can move to more professional setups, like for example, buying a car that is already prepared for autonomous car experiments, with full ROS support (like the Dataspeed Inc. Lincoln MKZ DBW kit).

Self-driving cars companies have realized those advantages and have started to use ROS in their developments. Examples of companies using ROS include BMW (watch their presentation at ROSCON 2015), Bosch or nuTonomy.

Captura de pantalla 2017-09-28 a las 20.55.51

 

Weak points of using ROS

ROS is not all nice and good. At present, ROS presents two important drawbacks for autonomous vehicles:

  1. Single point of failure. All ROS applications rely on a software component called the roscore. That component, provided by ROS itself, is in charge of handling all coordination between the different parts of the ROS application. If the component fails, then the whole ROS system goes down. This implies that it does not matter how well your ROS application has been constructed. If roscore dies, your application dies.
  2. ROS is not secure. The current version of ROS does not implement any security mechanism for preventing third parties to get into the ROS network and read the communication between nodes. This implies that anybody with access to the network of the car can get into the ROS messaging and kidnap the car behavior.

All those drawbacks are expected to be solved in the newest version of ROS, the ROS 2. Open Robotics, the creators of ROS have recently released a second beta of ROS 2 which can be tested here. It is expected to have a release version by the end of 2017.

In any case, we believe that the ROS based path to self-driving vehicles is the way to go. That is why, we propose a low budget learning path for becoming a self-driving car engineer, based on the ROS framework.

Our low-cost path for becoming a self-driving cars engineer

Step 1

First thing you need is to learn ROS. ROS is quite a complex framework to learn and requires dedication and effort. Watch the following video for a list of the 5 best methods to learn ROS. Learning basic ROS will help you understand how to create programs with that framework, and how to reuse programs made by others.

[irp posts=”6110″ name=”5 methods for learning ROS: which one is for you?”]

Step 2

Next, you need to get familiar with the basic concepts of robot navigation with ROS. Learning how the ROS navigation stack works will provide you the knowledge of basic concepts of navigation like mapping, path planning or sensor fusion. There is no better way to learn this than taking the ROS Navigation in 5 days course developed by Robot Ignite Academy.

Step 3

Third step would be to learn the basic ROS application to autonomous cars: how to use the sensors available in any standard of autonomous car, how to navigate using a GPS, how to generate an algorithm for obstacle detection based on the sensors data, how to interface ROS with the Can-bus protocol used in all the cars used in the industry…

The following video tutorial is ideal to start learning ROS applied to Autonomous Vehicles from zero. The course teaches how to program a car with ROS for autonomous navigation by using an autonomous car simulation. The video is available for free, but if you want to get the most of it, we recommend you to do the exercises at the same time by enrolling the Robot Ignite Academy (additionally, in case you like it, you can use the discount coupon 99B9A9D8 for a 10% discount).

Step 4

After the basic ROS for Autonomous Cars course, you should learn more advanced subjects like obstacles and traffic signals identification, road following, as well as coordination of vehicles in crossroads. For that purpose, our recommendation would be to use the Duckietown project. That project provides complete instructions to physically build a small size town, with lanes, traffic lights and traffic signals, where to perform real practice of algorithms (even if at a small scale). It also provides instructions to build the autonomous cars that should populate the town. Cars are based on differential drives and a single camera for sensors. That is why they achieve a very low cost (around 100$ per each car).

552172802_640

Image by Duckietown project

Due to the low economical requirements, and to the good experience that it may be for testing real stuff, the Duckietown project is ideal for start practicing some autonomous cars concepts like line following based on vision, other cars detection, traffic signals based behavior. Still, if your budget is even below that cost, you can use a Gazebo simulation of the Duckietown, and still be able to practice most of the content.

Step 5

Then if you really want to go pro, you need to practice with real-life data. For that purpose, we propose you to install and learn the Autoware project. This project provides real data obtained from real cars on real streets, by means of ROS bags. ROS bags are logs containing data captured from sensors which can be used in ROS programs as if the programs were connected to the real car. By using those bags, you will be able to test algorithms as if you had an autonomous car to practice with (the only limitation is that the data is always the same and restricted to the situation that happened when it was recorded).


Image-by-the-Autoware-project-post-of-self-driving-cars-ros
Image by the Autoware project

The Autoware project is an amazing huge project that, apart from the ROS bags, provides multiple state-of-the-art algorithms for localization, mapping, obstacles detection and identification using deep learning. It is a little bit complex and huge, but definitely worth studying for a deeper understanding of ROS with autonomous vehicles. I recommend you to watch the Autoware ROSCON2017 presentation for an overview of the system (will be available in October 2017).

Step 6

The final step would be to start implementing your own ROS algorithms for autonomous cars and test them in different, close to real situations. The previous step provided you with real-life situations, but always fixed for the moment the bags were recorded. Now it is time that you test your algorithms in more different situations. You can use already existing algorithms in a mix of all the steps above, but at some point, you will see that all those implementations lack some things required for your goals. You will have to start developing your own algorithms, and you will need lots of tests. For this purpose, one of the best options is to use a Gazebo simulation of an autonomous car as a testbed of your ROS algorithms. Recently, Open Robotics has released a simulation of cars for Gazebo 8 simulator.

Captura de pantalla 2017-09-28 a las 20.56.03

Image by the Open Robotics

That simulation, based on ROS contains a Prius car model, together with 16 beam lidar on the roof, 8 ultrasonic sensors, 4 cameras, and 2 planar lidar, which you can use to practice and create your own self-driving car algorithms. By using that simulation, you will be able to put the car in as many different situations as you want, checking if your algorithm works on those situations, and repeat as many times as you want until it works.

Conclusion

Autonomous cars is an exciting subject whose demand for experienced engineers is increasing year after year. ROS is one of the best options to quickly jump into the subject. So learning ROS for self-driving vehicles is becoming an important skill for engineers. We have presented here a full path to learn ROS for autonomous vehicles while keeping the budget low. Now it is your time to do the effort and learn. Money is not an excuse anymore. Go for it!

Course

ROS Autonomous Vehicles 101

Introduction to Autonomous Vehicles in the ROS Ecosystem

Masterclass 2023 batch2 blog banner

Check Out These Related Posts

129. ros2ai

129. ros2ai

I would like to dedicate this episode to all the ROS Developers who believe that ChatGPT or...

read more

14 Comments

  1. John

    No, Never going to happen… It will never be safe to have self driving cars and human drivers on the same road. Plus there is to many conditions and scenarios a self driving car will never be able to do… Not in my lifetime.

    Reply
      • Kash Olia

        We’re building it John! We’re building the future together.

        Reply
  2. Montserrat

    Great Blog, thank you very much! Do you know if multiple cars can be simulated?

    Reply
    • Ricardo Tellez

      Yes, you can simulate as many cars as you want. The only problem is computer power to simulate all of them

      Reply
  3. BestOrval

    I have noticed you don’t monetize your website, don’t waste your traffic, you can earn extra bucks every month.
    You can use the best adsense alternative for any type of website
    (they approve all websites), for more info simply search
    in gooogle: boorfe’s tips monetize your website

    Reply
  4. Younggi Song

    Thanks for your information and it can help us to make AD shuttle here in Korea. Keep in touch and hope to have close communication in the future

    Reply
  5. Azra Ali

    Thanks for sharing this information and it can help us to make AD shuttle here in Korea. Keep in touch and hope to have close communication in the future. Keep updating thanks.

    Reply
  6. Anonymous

    thow to get he map provide from Open Robotics?

    Reply
  7. Anonymous

    how to get he map provide from Open Robotics?

    Reply
  8. Karan Joshi

    Hello, Awesome Article, and Your information is very amazing and so much useful for me. Keep it up and thank you very much.:)

    Reply
  9. Chaimae

    Good

    Reply
  10. ikuya

    Open-source simulation environments are something but do the OEMs have enough resources to configure according to needs. Still, NCAP and some upcoming regulations are the main concerns. You may be Level 4 but you still need regulation conformity. Companies need to provide a testing environment ready to use besides a framework for OEMs. A few companies started specialized virtual proving grounds that are specially designed for the need. http://www.virtuosal.com is one of them for example. This saves time and money for OEMs and most of them still need to start from basic L1 features for regulation purposes.

    Reply
  11. Riko Conti

    I appreciate your knowledge and the way you convey it.

    Reply

Trackbacks/Pingbacks

  1. slam dunk – duckiebotnotlar - […] https://www.theconstruct.ai/start-self-driving-cars-using-ros/ […]

Submit a Comment

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Pin It on Pinterest

Share This